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max
x∈F (Ω)

u (x)



Introduction
Evolution: competition between individuals for survival and reproduction

• Strategic interactions (public goods games, rent seeking, trust
games, common pool resource games) must have been common

• Darwinian logic: those alive today had ancestors who were successful
at surviving and reproducing; our preferences should reflect this



Introduction
Our research question

• If preferences that guide the behavior of individuals in
strategic interactions are transmitted from one generation to
the next, and if the realized material payoffs determine
fitnesses, which preferences can evolution by natural selection
be expected to lead to?

• Goal: understand how the environment in which a population
evolves and features of the population affect the evolutionary
viability of preferences

• NB: transmission can be biological or cultural
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Introduction
Our research question

• Our ancestors (last 2My) lived in small groups (5-150
grown-ups), extending beyond the nuclear family (Grueter,
Chapais, and Zinner, 2012, Malone, Fuentes, and White,
2012, van Schaik, 2016, Layton et al., 2012)

• Part of the environment of evolutionary adaptation of the
human lineage (e.g., van Schaik, 2016)

• Impact of such group structure on evolved preferences?
• Group structure in the model: interactions within groups,
some migration between groups, sometimes conflicts between
groups



Introduction
Our research question

• Population dynamics in populations structured in groups:
• a long-standing tradition in biology (Wright, 1931)
• [Eshel 1972, Aoki 1982, Wilson, Pollock, and Dugatkin 1992,
Taylor 1992, Taylor and Irwin 2000, Gardner and West 2006,
Johnstone and Cant 2008, Lehmann, Foster, and Feldman
2008, Lion and Gandon 2010, Bao and Wild 2012, and
Micheletti et al. 2017]

• Surveys: Lehmann and Rousset (2010), Van Cleve (2015), and
Dos-Santos and Peña (2017)
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Our contribution

• We combine the island model with game theory

• Lehmann, Alger, and Weibull (Evolution 2015): is an
uninvadable strategy also a Nash equilibrium in some game
between individuals?

• Alger, Weibull, and Lehmann (WP 2018): uninvadable
preferences
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Model
Setup

• Imagine:

1. a population with an infinite number of islands of size n

2. evolution takes place perpetually over discrete time; each
demographic time period consists of two phases:

• Phase 1 : the n adults in each island play a game: common
strategy set X ; each individual has a preference relation on
X n, inherited from one older individual, which guides his
strategy choice; resulting material payoffs π (xi , x−i )

• Phase 2 : the realized material payoffs determine each adult’s
survival and fecundity; following reproduction, offspring may
migrate from their native island to other islands (probability
m > 0). After migration, individuals compete for available
spots; at the end there are exactly n adults in each group.



Model
Setup

• Phase 1 and 2 together determine each adult’s individual
fitness: the expected number of her immediate descendants
who have secured a “breeding spot” in the next demographic
time period

• Fitness of i when neighbors achieve material payoffs π−i and
the material payoff in the population at large is π̄∗:
w (πi ,π−i , π̄∗)



Model
Question

• Initially, everybody has the same preference relation, described
by a utility function u : X n → R

• Suddenly exactly one individual with another utility function,
v : X n → R, appears.

• Does the resident type withstand the invasion of the mutant
type?

• How does the answer to this question depend on “first
principles”?



Model
Uninvadability

• u is uninvadable against v if v is bound to disappear from the
population in finite time (i.e., if the random number of
demographic time periods during which v remains in the
population is finite with probability one)

• u is uninvadable in Θ if it is uninvadable against all v ∈ Θ
• To characterize the set of uninvadable utility functions, we
apply a recent result in the biology literature on the stochastic
evolution of traits in structured populations to preferences



Model
Uninvadability

• To this end we impose a homogeneity assumption concerning
individual’s equilibrium behavior in the subjective game:

[H] On all islands with the same number of mutants, and
irrespective of calendar time, the same Nash equilibrium
is played, and all residents use the same strategy (say,
x ∈ X), and all mutants use the same strategy (say,
y ∈ X).

• Compatible with: (i) Θ being the set of utility functions giving
rise to a unique dominant strategy; (ii) complete information;
(iii) incomplete information with constant beliefs over time.

• We focus on incomplete information, and use
type-homogenous Bayesian Nash Equilibria to evaluate the
fitness consequences of utility functions.



Model
Uninvadability

• The set of Bayesian Nash equilibria, BNE (u, v): the set
(x̃ , ỹ) ∈ X 2 such that x̃ belongs to the set of resident
strategies

Xu =
{
x̃ ∈ X : x̃ ∈ argmax

x∈X
u
(
x ,~x(n−1)

)}
and for each x̃ ∈ Xu , ỹ is the mutant best response

ỹ ∈ BRv (x̃) = argmax
y∈X

n−1
∑
k=0

pk (ỹ , x̃) · v
(
y ,~y(k ),~x(n−k−1)

)



Model
Uninvadability

• There may be several BNE
• Together with w and m, each BNE defines a Markov chain
that induces a probability distribution over possible mutant
local lineage realizations

• This distribution determines the average fitness of a mutant
randomly sampled across all possible local lineage realizations:

W (y , x) =
n−1
∑
k=0

pk (y , x) · w̃
(
y , y(k ), x(n−1−k ), x

)
• pk (y , x): the probability for such a randomly drawn mutant
that k = 0, 1, ..., n− 1 of his neighbors are also mutants

• W (y , x): the lineage fitness of the mutant type v given this
BNE



Model
Uninvadability

• Generalization of a result due to Lehmann, Mullon, Akçay,
and Van Cleve (2016):
u ∈ Θ is uninvadable if and only if for every v ∈ Θ,

W (y , x) ≤ W (x , x) for all (x , y) ∈ BNE (u, v)



Results
A general result

In a population P = 〈n,X ,π,w ,Θ〉, let X̂ (P) be the set of
uninvadable strategies:

n−1
∑
k=0

pk (y , x) · w̃
(
y , y(k ), x(n−1−k ), x

)
≤ 1 ∀y ∈ X .

Proposition

A utility function u is uninvadable in F if and only if Xu ⊆ X̂ (P).



Results
Utility and fitnesses

ux ∗ (xi , x−i ) = Ep(xi ,x ∗) [w̃ (xi , z̃−i , x
∗) | (xi , x−i )] ∀(xi , x−i ) ∈ X n,

• p (xi , x∗) = (p0 (xi , x∗) , p1 (xi , x∗) , ..., pn−1 (xi , x∗)) : the
vector of matching probabilities that would be induced if
residents played x∗ and mutants played xi

• z̃−i : a random strategy-profile such that with probability
pk (xi , x∗) (for each k = 0, 1, .., n− 1) exactly k of the n− 1
components in x−i are replaced by xi , with equal probability
for each such subset of k replaced components, while the
remaining components in x−i keep their original value.



Results
Utility and fitnesses

• A residential strategy under the utility function ux̂ satisfies:

x̃ ∈ argmax
y∈X

n−1
∑
k=0

pk (y , x̂) · w̃
(
y , y(k ),~x(n−1−k ), x̂

)

• An uninvadable strategy x̂ satisfies:

x̂ ∈ argmax
y∈X

n−1
∑
k=0

pk (y , x̂) · w̃
(
y , y(k ), x̂(n−1−k ), x̂

)
.
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Results
Utility and fitnesses

Proposition

Each uninvadable strategy x̂ ∈ X̂ (P) is also a residential strategy
under the utility function ux̂ . If it is the unique residential strategy,
then ux̂ is uninvadable in Θ = F .



Results
Utility and fitnesses

• Kantian concern at the fitness level

ux ∗ (x , y) = p0 (x , x∗) · w̃ (x , y , x∗) + p1 (x , x∗) · w̃ (x , x , x∗)

ux ∗ (x , y , z) = p0 (x , x∗) · w̃ (x , y , z , x∗) +
p1 (x , x∗)

2
· w̃ (x , x , z , x∗)

+
p1 (x , x∗)

2
· w̃ (x , y , x , x∗) + p2 (x , x∗) · w̃ (x , x , x , x∗) .



Results
Utility and material payoffs

• Interactions with marginal effects on fitnesses
• Suppose that for any (xi , x−i ) the material payoff is

π̄ (xi , x−i ) = (1− δ)π0 + δπ (xi , x−i )

and let the fitness be

w (π̄i , π̄−i , π̄∗) = w
[
π̄ (xi , x−i ) , (π̄ (xj , x−j ))j 6=i , π̄ (x

∗, x∗)
]

• Weak selection: consider the limit as δ ≥ 0 tends to 0
• Taylor expansion of fitness around δ, evaluated at δ = 0:
focus on first-order effects on an individual’s fitness

• Key implication: pk (y , x)→ p0k ∀x , y ∈ X ,
k = 0, 1, ..., n− 1



Results
Utility and material payoffs

• Let v0 : X n → R be defined by

v0 (xi , x−i ) = Ep0

[
π (xi , z̃−i )− λ0 · ∑

j 6=i
π (z̃j , z̃−j ) | (xi , x−i )

]

where λ0 is the coeffi cient of fitness interdependence under
weak selection:

λ0 = lim
δ→0

(
−∑
j 6=i

∂w (πi ,π−i ,π∗)
∂πj

)
/
(

∂w (πi ,π−i ,π∗)
∂πi

)



Results
Utility and material payoffs

Proposition

The utility function v0 is uninvadable in Θ = F under weak
selection. A utility function u ∈ Θ is invadable under weak
selection if ∃x̃ ∈ Xu such that x̃ /∈ Xv 0 . Moreover, 1− n ≤ λ0 ≤ 1.



Results
Utility and material payoffs

• For n = 2:

v0(xi , xj ) =
(
1− p01

)
π (xi , xj )

−λ0p01π (xj , xi )

+ (1− λ0) p01π (xi , xi )

• A mix of self-interest, a Kantian concern, and a comparison
with others’material payoffs



Results
Utility and material payoffs

[D] (i) X = R, (ii) π : Rn → R is continuously differentiable, and
(iii) pk : X 2 → [0, 1] is differentiable for all k ∈ {0, 1, ..., n− 1}.

Proposition

If [D] holds and x̂ ∈ X̂ (P), then

[1− κ (x̂)] · π1
(
x̂ , x̂(n−1)

)
+ κ (x̂) ·

n

∑
j=1

πj

(
x̂ , x̂(n−1)

)
= 0.

κ (x) is the coeffi cient of scaled relatedness:

κ (x) =
r (x , x)− 1

n−1λ (x) [1+ (n− 2) r (x , x)]
1− λ (x) r (x , x)



Three canonical scenarios
Genes

w (πi ,π−i , π̄∗) = s (πi ) + m · [1− s (π̄∗)] n · f (πi )
nf (π̄∗)

+ (1−m) ·
(
n−

n

∑
j=1
s (πj )

)
· f (πi )
(1−m)∑n

j=1 f (πj ) + nmf (π̄
∗)

s (πi ): probability that i survives to the next demographic time
period
f (πi ) > 0: i’s expected number of offspring



Three canonical scenarios
Genes

Suppose that s (πi ) = s0 and f (πi ) = f0 · exp (δ · πi ). Then:

rA0 =
(1−m)2 +

(
1+m2

)
s0

n− (n− 1) (1−m)2 + (1− (n− 1)m2) s0

λA0 =
(n− 1) (1−m)2

n− (1−m)2

κA0 =
2 (1−m) s0

2 (1−m) s0 + n [2−m (1− s0)]



Three canonical scenarios
Genes

Black solid: s0 = 1/n and n = 2 Black dashed: s0 = 1/n and
n = 10 Blue solid: s0 = 0.8 and n = 2 Blue dashed:

s0 = 0.8 and n = 10 Pink: s0 = 0



Three canonical scenarios
Guns

w (πi ,π−i , π̄∗) = [(1− ρ) + 2ρv (π, π̄∗)] ·
[
m · f (πi )

f (π̄∗)
+

(1−m) n · f (πi )
(1−m)∑n

j=1 f (πj ) + nmf (π̄
∗)

]
ρ: probability that any given island is drawn into war
v (π, π̄∗): probability that an island, in which material payoff
profile π ∈ Rn obtains, wins a war when the average payoff in the
rest of the population is π̄∗



Three canonical scenarios
Guns

Suppose that f (πi ) = f0 · exp (δ · πi ) (as in the preceding
example) and vn (π, π̄∗) =

exp(δ·nπ̄)
exp(δ·nπ̄)+exp(δ·nπ∗) . Then:

rB0 =
(1−m)2

n− (n− 1) (1−m)2

λB0 =
(n− 1) (1−m)2 − ρ (n− 1) n/2

n− (1−m)2 + ρn/2

κB0 =
ρ

ρ+ 2m (2−m)



Three canonical scenarios
Guns

Pink: ρ = 0 Orange: ρ = 0.4 Blue: ρ = 0.8



Three canonical scenarios
Culture

w (πi ,π−i , π̄∗) = s (πi ) + m · [1− s (π̄∗)] · f (πi )
f (π̄∗)

+ (1−m) ·
(
n−

n

∑
j=1
s (πj )

)
· f (πi )

∑n
j=1 f (πj )

s (πi ): probability that i’s child emulates i’s trait
(1−m) ·

[
n−∑n

j=1 s (πj )
]
: expected number of children in i’s

island who did not emulate their parent’s trait and who will
emulate i’s trait
m · [1− s (π̄∗)]: expected number of children from other islands
who did not emulate their parent’s trait and who will emulate i’s
trait
f (πi ): attractiveness of the trait used by i



Three canonical scenarios
Culture

Suppose that f (πi ) = f0 · exp (δ · πi ) and s (πi ) = s. Then:

rC0 =
(1−m) [2s0 + (1−m) (1− s0)]

n (1+ s0)− (1−m) (n− 1) [2s0 + (1−m) (1− s0)]

λC0 =
(n− 1) (1−m)
n− (1−m)

κC0 = −
(1−m) (1− s0)

2n− [m (n− 1) + 1] (1− s0)



Three canonical scenarios
Culture

Pink: s0 = 0, n = 2 Orange: s0 = 0.4, n = 2 Blue: s0 = 0.8,
n = 2

Pink dashed: s0 = 0, n = 10 Orange dashed: s0 = 0.4, n = 10
Blue dashed: s0 = 0.8, n = 10



Concluding remarks

• Theory helps us understand how evolutionary forces may have
shaped homo sapiens

• impact of environment on preferences
• discovery of novel preference classes
• Alger and Weibull (Annual Review of Economics 2019)

• Teaser: experimental study with Jörgen and Boris van
Leeuwen (a WP by the end of the summer)
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